
Faculty of Computer Science Institute of Systems Architecture, Chair of Privacy and Data Security

CrowdFilter: Client-Side Classification
of Web Content
Großer Beleg

Dominik Pataky
Tuesday 19

th
June, 2018

Author Dominik Pataky

dominik.pataky@tu-dresden.de

Matrikel 3749148

Supervisor M.Sc. Clemens Deußer

Professor Prof. Dr. Thorsten Strufe

License CC BY-SA 4.0

1

Contents
1. Introduction and motivation 1

1.1. Related projects . 2

1.2. Terms and definitions . 2

2. Project overview, designs and evaluations 3
3. Firefox browser add-on and API back end 4

3.1. The WebExtension add-on . 4

3.1.1. Version 1: Injecting a drop down button . 6

3.1.2. Version 2: Using context menu and generic text selection 6

3.1.3. Features used in both versions . 8

3.2. Collector . 9

3.2.1. HTTPS with LetsEncrypt . 9

3.2.2. TOR hidden service . 9

3.3. Evaluation . 10

4. Classification of collected comments 11
4.1. Crawling Reddit and 4chan . 11

4.2. Crowd-sourced classification of comments . 12

4.3. Evaluation . 12

4.4. Data analysis . 13

5. Difficulties of using pre-selected classification labels 16
6. Conclusion 17
A. Appendix 18
A.1. Screenshots . 18

A.2. Database schemata overviews . 19

References, List of Figures, Glossary 20

Dominik Pataky, Großer Beleg „CrowdFilter“, WS2017 2

The widespread usage of online social networks like Facebook or Twitter introduce new

challenges to regulators. Fake News and Hate Speech are subjects of mainstream media

headlines and politicians are looking for ways to regulate online discussions. Providers of

these platforms are in the need to react - but it is observable that these reactions are some

times premature and can introduce additional problems like censorship.

In this project I examined multiple technical approaches with which undesirable content

can be classified as such by the users, making it possible to collect crowd sourced classific-

ations to further generate filter lists for automated content classification. Using these lists

users could then decide what type of content they would like to filter out, very similar to

common ad blocking techniques.

The approaches I chose include the use of a Firefox browser add-on with a back end server

and a classification web interface based on independently crawled content from Reddit and

4chan. The exploration of these different implementations stemmed from the observation

that creating a tool which reached a high participation rate is challenging. I present the three

development iterations the project went through and can conclude that a mixture of all my

approaches is the most promising composition for tools which aim to fulfil similar purposes.

1. Introduction and motivation
In 2018, the biggest social media websites – and therefore most of the platforms where interaction

between users happen – are in control of very few companies. These companies, notably the US com-

panies Facebook with WhatsApp and Instagram, Google with YouTube, Twitter, Reddit, LinkedIn, the

Russian network VKontakte and the Chinese platforms Baidu, Weibo and QZone, have become very

powerful exchange points for discussions. As displayed in the table in figure 1 Facebook announced over

two billion monthly active people in its network, which would mean it currently reaches around 28% of

the world population.

Platform Users

Facebook 2100

YouTube 1500

WhatsApp 1300

Instagram 800

QZone 568

Weibo 376

Twitter 330

LinkedIn 260

Reddit 250

VKontakte 97

Figure 1: Number of users on

social media platforms

(in millions). Source:

statista.com/statistics/272014

From a technical point of view these platforms are indeed great

steps forward and their achievements in the deployment of distrib-

uted systems and Cloud interoperability should not be undervalued.

Additionally tech companies with their own research laboratories of-

ten also publish their research results and thereby contribute to the

global research community from inside privately held institutes, for

example Facebook Research or Google Research.

But there is another side to all the advancements in creating global

social platforms: the use and misuse of the provided communication

channels. There is currently an increasingly politicised debate around

regulation of user generated content on these platforms and operat-

ors will have to expand their software stacks with tools to not only ful-

fil law enforcement information requests but also to remove content

which collides with national laws. The German Netzwerkdurchset-

zungsgesetz [Jus] (NetzDG), effective in Germany since October 2017,

is one example of such a law. It forces platforms to cooperate and reg-

ulate content within a certain time span or the company faces heavy

fines. These regulations introduce new challenges to be solved by

platform providers. Currently no established regulation infrastructure

exists and the development and implementation of such tools carry risks like misuse and censorship.

This debate not only needs proper technical tools but also answers to political and philosophical ques-

tions. We will come back to this in the discussion in section 5, followed by a review of the whole project.

To examine possible solutions CrowdFilter consists of multiple concepts with which the control over

content stays with the users of platforms. I believe this initial shift away from holding the platforms

responsible is a usable way to prevent central authorities from becoming the policy-makers over content

– preventing abuse as well as excessive regulatory demands. In the first chapter in section 3we will have

a look at the first approach, a Firefox browser add-on and its back end. The evaluation at the end of this

chapter gives a review of this first implementation. The second chapter beginning in section 4 covers the

collection of Comments and the implementation of a classification web tool. After the technical details I
will again evaluate the results and look into statistics generated from the collected data.

Dominik Pataky, Großer Beleg „CrowdFilter“, WS2017 1

1.1. Related projects
In Fall 2016, four students developed the browser extension „FiB“ [De+] for Google Chrome during a
hackathon at Princeton University to combat Fake News on Facebook. The tool identified content on

the timeline and used external sources to validate the extracted headlines, displaying the classifications

„verified“ or „not verified“.

In December 2017, the Boston Globe reported about the project Open Mind which originated from a
hackathon at Yale University [Glo]. Open Mind is also an extension for the Chrome browser and aims

to detect Fake News articles and display a warning to the reader, too. According to the article it also

suggests alternative articles which talk about the same topic but were deemed a good balance (on the

political left-right-spectrum) for the current publication.

At the Chaos Communication Congress 2017, the 34C3, German author Michael Kreil presented his

research results „Social Bots, Fake News und Filterblasen“ [Kre]. His evaluation of an analysis of
accounts and user networks on the Twitter platform resulted in the realisation that influential „social

bots“ are in fact mostly highly active Twitter users. He also criticised methods and research approaches

of related works on the topic, calling upon a re-evaluation of published articles.

A collaboration project involving the Universities of Antwerp and Hildesheim uses real time analysis
algorithms of Tweets to recognise hate speech [Ant]. Their approach is based on classified keywords

and resulted in 80% detection accuracy.

Both Twitter [Pos] and Facebook [Tri] [Exa] rolled out UI features to handle reporting of unwanted
content. In general most forum software releases have some kind of „report“ functionality, enabling the

users to report illegal or unacceptable content from other users of the community.

In April 2018, Github announced a new feature called „Minimized comments“ which in theory has
similar intentions as the CrowdFilter add-on: „While maintainers can edit or delete disruptive comments,

they may not feel comfortable doing this, and it doesn’t allow the comment author to learn from their

mistake. [...] maintainers can now click in the top-right corner to minimize and hide comments [...]“.

1.2. Terms and definitions
For reference and to further improve the understanding of terms created during the development of

this project I use the following definitions when using the described terms.

WebExtension The add-on API specification which Firefox enforces since version 57.
Collector Back end tool for the browser add-on. Receives the data which was sent by user interaction

through the add-on.

Simulation The second stage of this project started after the evaluation of the add-on. Implemented
as a website form, the Simulation tool offered an easy to use interface with 10 Comments to be
classified. The Comments were aggregated from a collection of crawled user Content from 4chan

and Reddit.

Content Content on websites can be text (e.g. forum contributions, posts on social media) or any multi-
media (images, videos, audio files).

Comment Used in the context of chapter 4. A text from social websites like 4chan or Reddit, written by
a user of the corresponding platform. Can contain meta data like a timestamp and identifier.

Submission Input a CrowdFilter user sent to the CrowdFilter web endpoints. Either JSON sent via the

browser add-on or the submission of the Simulation web form.
Evaluation Labeled Comments, a combination of a Comment together with either a Classification or the

label „No classification“.

Classification Classifications are Evaluations which used any of the available classification labels except
the label „No classification“.

Dominik Pataky, Großer Beleg „CrowdFilter“, WS2017 2

2. Project overview, designs and evaluations
Due to multiple alterations of the original concept for this project I will give a short introductory over-

view to have a look at all parts of this project. In total, the project includes three iterations of design,

implementation and evaluation. Figure 2 contains the iteration details.

Figure 2: Overview of the project design, implementation and evaluation flow

The initial question I based the implementation of this project on resulted in the first approach, the

add-on. I opted to develop a tool which could be easily integrated into the every day modern browsing

experience. For this, I chose Firefox with its WebExtension API. It opens the possibility to integrate all

features I aimed for, namely website manipulation, integration into the user interface and submission

of user-generated data to an external collector server.

After the first round of testing and participant feedback the evaluation showed that the approach

had a chance to succeed but the implementation carried some restraints. I therefore stayed with the

browser add-on approach but switched to a more generic implementation, lowering the usage barrier

and improving extensibility.

With a second round of evaluation and feedback collection I ended the add-on development and con-

cluded that this approach does provide a useful tool but would need more advertisement and prepara-

tion for participation.

Since the central task was to crowd source the classification of text content I decided to design a third

implementation, this time not based on the add-on. For this, I used crawlers to populate a database

with a collection of Comments from the Reddit and 4chan social platforms and combined this pool of
Comments with a web interface, which was also developed specifically for this project. This third stage
resulted in more participation and data, which could be used for a final analysis to have a look into its

informative value.

The project review in section 6 continues this section and provides a conclusion of all approaches. We

will now continue with section 3 in which I explain the implementation details of the add-on.

Dominik Pataky, Großer Beleg „CrowdFilter“, WS2017 3

3. Firefox browser add-on and API back end
3.1. The WebExtension add-on
The add-on prototype is implemented for Firefox. Since version 57 add-ons in Firefox use the WebExten-

sion Application Programming Interface (API) exclusively, documented in the Mozilla Developer Network

(MDN). This API allows finer permissions, better isolation of components and is also implemented in

Chrome which allows cross-browser development. The implementation of prototypes of this add-on

produced two different approaches. The first version injected a button into the Document Object Model

(DOM) of specific sites (github.com, twitter.com and heise.de) which offered a drop down list with
classification labels. A refactoring of this version towards a more generic implementation for an un-

known set of websites resulted in the second version of the add-on, beginning with v2
1
.

A WebExtension consists of multiple files packaged as a ZIP archive. Firefox unpacks this archive, reads

the content of the manifest.json file and executes the add-on if the manifest contained no errors. The
manifest contains meta data consisting of the name of the add-on, version specification, project URL

and name of the authors. It also contains a list of permissions and scripts to be executed.

Scripts are either background scripts or content scripts. They differ in their permission set and API

features. A content script is injected as an additional script into a page which is running in a browser

tab, like every other JavaScript script which is included by the website. Background scripts are executed

in their own context, the add-on context, in the background (as scripts in background pages).

Background scripts have access to the storage and can make their own requests to remote resources

with Asynchronous JavaScript and XML (A JAX). Since they are not associated with a tab and run as a

single instance during the whole browser session, independent of any tab state, they do not have access

to any DOM elements loaded in tabs inside the browser.

Content scripts are injected on websites the browser recognises by a pattern, e.g. //example.com/*.
The content script is running along side all other page scripts in the context of the tab and can manipu-

late the DOM of the page.

Both script types combined offer the full feature set that is needed to do complex tasks. Connecting

content with background scripts is therefore an essential feature, which is also offered. There are two

possible ways to implement channels:

1. runtime.sendMessage and corresponding handlers when a message appears,

2. runtime.connect to open a dedicated channel („port“) between content and background scripts.

If a content script sends a message to a background script, a listener receives this event and executes

a function called e.g. handleMessage(message). The content of the passed object message can be freely
chosen. This implementation for example used a src attribute to differentiate between multiple scripts
that send messages. In case the message is from an injection script, the handler would look for the cmd
attribute and decide what to do. In this case, a content script requested a list of currently configured

classifiers. Using the respondmethod the response object with a type and content are sent back by the
background script.

WebExtensions in Firefox are also able to include a custom options page (accessible from the add-ons

list), a toolbar button (with either an action or a popup) and a bundled page that can be opened in a tab.

CrowdFilter used all of these features:

1. The customised options page let the user toggle the usage of the TOR hidden service instead of

the public internet Collector endpoint and also offered a feedback form.
2. A toolbar button with the add-on’s icon was displayed on tabs in which the plugin was activated.

3. Clicking on the toolbar button opened a bundled page that showed additional information about

the add-on and displayed a list of recently sent JSON data for review by the user (for increased

transparency, stored in the browser storage).

The feedback form mentioned in point 1 enabled the users to directly tell me about usage problems

and improvement suggestions. The integration of the form inside the options page was not suppor-

ted by the native API, since the internal configuration pages (add-ons, preferences etc.) in Firefox are

not rendered like other DOMs and cannot communicate with the background script. They do however

support a very limited interface for styling.

1https://github.com/CrowdFilter/crowdfilter-webextension/releases/tag/v2.0.0

Dominik Pataky, Großer Beleg „CrowdFilter“, WS2017 4

https://github.com/CrowdFilter/crowdfilter-webextension/releases/tag/v2.0.0

The solution was to use the available JavaScript API which listened for the submission of the feedback

text form. The triggered event then cleared the submission form and put the entered text into the

storage. The background script had a second listener which was triggered by a change in the storage,

notifying the background script about a new submission which it should then send to the Collector API.
Most of the content from the options page was later migrated into the info page, which also resolved

the need for this workaround.

Another aspect which produced multiple solutions was the update of URL filter regular expressions

and the list of classifications. This was solved with two approaches:

1. Pulling of a remote configuration file hosted on the web server, which was always up-to-date and

the add-on would use the new version.

2. Using the Firefox auto-update feature to roll out new patch-level versions (according to SemVer)

regularly.

The first approach began with a list of classifications formatted in the JSON, which can be natively used

with JavaScript. The CrowdFilter API offered an endpoint which generated the JSON from the internal

database. Another endpoint supplied a JSONwith the list of URL filter regex strings. Both endpoints were

later merged together so the add-on only had to pull one configuration file. I then added a timer which

polled the endpoint every 10 minutes (for testing purposes, the timer should wait longer in production

environments).

But I observed two crucial disadvantages of this solution: with the small timer value the requests

against the configuration API endpoint could very well be used to track the user. Given a 10 minute

polling interval one could easily log the user’s IP changes and e.g. standby times in which Firefox was

not running. The fact that this „feature“ is so easy to activate was shocking. The second risk this method

introduced was the injection of code parts. Especially the payload consisting of regular expression pat-

terns which were later executed in JavaScript looked like a risk factor. I did not try to exploit this feature.

Instead the remote configuration was replaced with the native browser auto-update for add-ons. Since

I used the self-hosted add-on style which does not distribute the add-on XPIs over addons.mozilla.org

(AMO) the downloadable files have to be provided on a web server. This can be done by using the

update_url key inside the manifest. The URL must point to a JSON formatted file which provides URLs
to all signed versions of the add-on. If the user has activated the automatic update feature, Firefox polls

the URL once a day for updates and installs the latest version if a newer one has been found.

I now had the ability to put the configuration with classifications and URL filters inside the add-on

package and reduced the needed communication between the add-ons and the web server drastically.

Dominik Pataky, Großer Beleg „CrowdFilter“, WS2017 5

3.1.1. Version 1: Injecting a drop down button

Figure 3: Injection of the drop down button on

Twitter

The first implemented version of the add-on used multiple

scripts and site-specific code to add a button into the pages

Document Object Model (DOM). It is best to explain the pro-

cedure with an example: Tweets.

First, the permission to execute code on twitter.com is
needed, an example is illustrated in figure 4. Twitter is also

a good example to explain the combination of executed

content and background scripts. Both are needed to handle

A JAX requests on pages which do not reload the whole page

when browsing through it but only replace changed ele-

ments on pages.

The problem is: even though the address bar changes the

displayed URL, the WebExtension filter for content scripts

is not matched if you do not make a direct page request

by putting the URL into the address bar and pressing enter.

To solve this, another background script is needed which

intercepts requests on certain websites to look for A JAX re-

quests that need code injection.

As displayed in the example in figure 4, if the user visits any page on twitter.com the content script
is injected by the add-on, after executing all scripts that were requested by twitter.com itself. This
script is needed for later execution of code. While the cf-injection.js script is loaded as a content
script inside the tab, the background scripts background.js and ajax-detector.js are loaded when
the add-on is loaded into the browser. Triggering the background script is done by adding a listener with

browser.webRequest.onCompleted.addListener. If the URL which was loadedmatches a pattern given
as parameter to the function, a callback function is executed when the resource is finished loading. See

figure 5 for an example.

To explain the code three steps need to be considered:

1. A request for a new resource is fired, probably as an XHR. After this request is done, the browser

notifies the script which listens on webRequest.onCompleted.

2. If the URL of the A JAX request is matched in the listeners filter list urls, url_catcher is executed
with the full request object.

3. This request object is again examined, but inmore detail - it is matched against regular expressions

for very specific cases (here: loading a Tweet via its permalink).

If all these three steps succeed we know for sure that there was a request we want to inject code into.

This is done with the inject function, which receives the key of the identified regex. Inside the add-
on package are multiple injection scripts in /js/injectors/, e.g. twitter.js as illustrated in figure 6.
Coming back to the injected content script, executing injectButton(...); uses the injected JavaScript
function to insert the button element, specifically positioned inside the DOM of this page.

If you wish to have a further look into the implementation, I wrote about it in detail in [Pat].

3.1.2. Version 2: Using context menu and generic text selection
The first version of the add-on had one significant disadvantage: one had to bundle the element extrac-

tion identifiers for every website the add-on should be able to handle. And those identifiers were also

subject to change when the website provider rolled out changes on his side. The result was a collection

of snippets with identifiers which would have to be updated and extended by publishing new versions

of the add-on or would have to be pulled from external sources.

Version 2 of the CrowdFilter add-on introduced a new approach to solve this problem. Since the key

feature of the add-on was to send text content from websites paired with a classification, I looked into

browser capabilities for an alternative implementation and chose the context menu API
2
.

2https://developer.mozilla.org/en-US/Add-ons/WebExtensions/user_interface/Context_menu_items

Dominik Pataky, Großer Beleg „CrowdFilter“, WS2017 6

https://developer.mozilla.org/en-US/Add-ons/WebExtensions/user_interface/Context_menu_items

"permissions": [
"activeTab",
"https :// twitter.com/*"

],
"content_scripts": [{

"matches": [
"https :// twitter.com/*"

],
"js": ["js/cf-injection.js"],
"run_at": "document_end"

}]

Figure 4: Permissions to load the injection script on pages under the domain twitter.com in the

Firefox WebExtension manifest

const filters = {
"github": "issues /[0 -9]{1 ,10}\\??",
"twitter": "/status /[0 -9]*(\\? conversation .*)?"

};

function url_catcher(details) {
let url = details.url;
let regexp;
for (const key of Object.keys(filters)) {

regexp = new RegExp(filters[key], "i");
if (url.match(regexp) != null) {

inject(key);
break;

}
};

}

browser.webRequest.onCompleted.addListener(
url_catcher ,
{ // Filter

urls: [
"https :// github.com /*/*",
"https :// twitter.com/*"

]
}

);

Figure 5: WebRequest event listener used for detecting A JAX page loads and trigger the injection

on certain URL patterns, identified by regular expressions

var comment_element_id_prefix = null;
var comment_element_classes = ["permalink -tweet", "tweet"];
var injection_element_identifier = ".permalink -header";
var clicked_source = "twitter";

injectButton(injection_element_identifier);

Figure 6: Injection script for Twitter, identifying specific DOM elements used in the injection

script for element insertion

Dominik Pataky, Großer Beleg „CrowdFilter“, WS2017 7

The two crucial features which made me choose the context menu interface were

1. the native integration into the browser UI, only using the logo icon to enhance recognisability,

2. the availability of the menus.ContextType which only displays the context menu when text is se-
lected. This reduces the visibility of the add-on to situations where interaction is possible, avoiding

pollution of UI elements.

This way the user simply highlights a text part on the current website, opens the context menu and

can classify content with one additional click. Additionally, using this technique to classify content is not

only easier it also solves the problem of implementing the classification button for specific websites, it

is a website agnostic implementation.

As soon as the user selects a text and clicks on the context menu classification item, the add-on

handles the browser.contextMenus.onClicked event. The handler receives the event and the ID of
the context menu item (set up at the time of creation to uniquely identify the classifications) and sends a

JSON with the original_url, the page_title, the selection and of course the classification to the
Collector server.
Another introduced feature which came with this version was the reduced permission set. The add-on

did not have to ask for any site permissions except the two server endpoints (HTTPS and TOR) because it

as not necessary to inject any scripts into tabs anymore. Furthermore even those two permissions were

later removed – leaving to site permissions at all – by properly configuring the Cross-origin resource

sharing (CORS) headers in nginx.

Lastly, I decided to finish the development of version 2 with a small usage tutorial. For this a small

website was integrated into the add-on package and was loaded when either the add-on was installed

the first time or an update of the installed add-on occurred. A screenshot of this page is displayed in

figure 7. For privacy reasons I also added an activation button to this page, only enabling the transmis-

sion of data to the server when the user clicked on the „we would like to ask you for your permission to
transmit data to our server“ button. If the user did not click the button and tried to use the context menu
on another website, the string [not activated] was appended to the CrowdFilter entry.

3.1.3. Features used in both versions
Both versions generated a unique identifier which was stored in the browser’s storage. In case the add-

on is executed the first time, the background script creates a new ID and stores it. Further executions

checked the value inside the storage and remembered the ID. The ID was used as a payload field in

all Submissions users sent. My original intention was to detect possible misuse, making it possible to
correlate Submissions and participants with each other. But given the small user base this was not
necessary.

Figure 7: Add-on version 2 showing the introduction page which appears after installation and

updates of the add-on

Dominik Pataky, Großer Beleg „CrowdFilter“, WS2017 8

3.2. Collector
The Collector is the back end tool which the add-on sends data to. It is a Python application proxied
behind an nginx web server listening on ports HTTP (80) and HTTPS (443) for incoming connections.

During the run time of the experiment the server was hosted as a virtual machine at the TU Dresden.

Due to data privacy concerns the remote IP address of clients connecting to the web service was

removed from any logs. This way the stored Personally Identifiable Information (PII) was reduced on the

server. To counter abuse of the API (e.g. denial of service due to flooding with data) the virtual host

which handled incoming requests was configured with a rate-limit, guarding the proxied application.

The application itself, written in Python 3 with the Flask web framework and connecting to a Postgr-

eSQL 9 database, was started as a uwsgi instance. The decision to use the combination of Flask, uwsgi

and nginx was based on experience from earlier projects, the stack proved to work very well.

3.2.1. HTTPS with LetsEncrypt
LetsEncrypt is a new Certificate Authority (CA) (launched in 2016) which offers HTTPS certificates at no

charge. Until the release of LetsEncrypt and the newly developed Automated Certificate Management

Environment (ACME) protocol for automated issuing of certificates to clients one had to buy a validated

certificate from one of multiple CAs. It was also possible to use the CAcert Web of Trust, with the limita-

tion that the CAcert root certificate was installed in nearly none operating system distribution trust store

by default. This leads to verification errors inside the browser when one requests a secure connection

to a web resource.

Both problems are solved by LetsEncrypt. The service is free of charge, automated and the root cer-

tificate is anchored on most platforms. In February 2018, LetsEncrypt has issued more than 100 million

certificates and played a big part in the percentage growth of encrypted websites from around 50%

to 70%, according to Firefox Telemetry measurements. New services like wildcard certificates and the

improvement of automated issuing will probably push this share even higher. Browsers like Mozilla Fire-

fox
34
and Google Chrome

5
integrate methods to not only display insecure connections but also block

unencrypted resources completely - resulting in an increased interest in migrating websites to HTTPS.

3.2.2. TOR hidden service
In the context of privacy I offered the feature to send data over the internal Tor network. Users which

wished to use the anonymous Collector endpoint, a Hidden Service inside the Tor network, could opt-in
on the add-ons options page. As soon as the add-on notices a change in the setting, it switched the

configured endpoint URL to either the Hidden Service or back to the publicly accessible HTTPS endpoint.

Connecting via a Hidden Service ensures an encrypted, authenticated channel. Every connection is

logged from 127.0.0.1 and no other identifiable connection meta data is available to the administrator
of the web server (except that one has chosen to use Tor).

3https://blog.mozilla.org/security/2017/01/20/communicating-the-dangers-of-non-secure-http/
4https://www.ghacks.net/2018/02/14/firefox-60-new-not-secure-indicator-preferences/
5https://security.googleblog.com/2018/02/a-secure-web-is-here-to-stay.html

Dominik Pataky, Großer Beleg „CrowdFilter“, WS2017 9

https://blog.mozilla.org/security/2017/01/20/communicating-the-dangers-of-non-secure-http/
https://www.ghacks.net/2018/02/14/firefox-60-new-not-secure-indicator-preferences/
https://security.googleblog.com/2018/02/a-secure-web-is-here-to-stay.html

3.3. Evaluation
The implementations presented in this chapter showed to be a less viable solution than anticipated at

the beginning of the project.

Version 1 proved to be a helpful tool to collect not only text snippets but also to extract meta data

like authors, timestamps of posts and other website-specific elements. The downside was the need for

updates when website DOM structures were changed or new websites should have been included as

sources into the project.

Version 2 offered the ability to select and classify any text selection on any website and came with

a reduced the code size. It was easier to use and was integrated into the native browser UI without

interfering into the DOM generation. But it introduced the loss of much of the meta data.

After gathering feedback from a handful of people which were asked about their usage experience

the following two improvements were identified:

1. Users need an incentive to participate in the collection of classifications (e.g. they need to experi-

ence the „worth“ of their own inputs),

2. an effect after submitting their inputs would increase the engagement rate (e.g. the user receives

a newly generated filter list after submission and experiences an improvement of filtered content).

Since I was starting with an empty database, there was a very high barrier of collected data to be

reached before one would have been able to begin with the creation of filter lists which could have been

pushed back to the user.

This brought another difficulty to light: it could be anticipated that asking specific persons – friends,

colleagues, people in online forums – to participate would lead to a biased user base, since the chance

that people we have around us in our daily life have a very similar set of opinions is very high. To test

the option of gathering more participants, I posted the project’s website on Reddit and Hacker News and

talked about the project in a Lightning Talk at the 34C3. The response was sparse. For testing purposes

the small circle of participants showed to be very helpful input, but I concluded that the attractiveness

of the add-on must be further improved before any significant variation of inputs can be generated. We

will again talk about the project continuation in section 6.

In conclusion the approach of using a browser add-on is a useful tool to provide a submission channel

for user-generated classifications, and could possibly also be used as a bi-directional channel to push

back filter/classification lists into the browser. But this experiment showed – after implementing two

concepts – that such a tool must be designed approachable and that some kind of reward system, e.g. a

directly visible gain for the user, is necessary to elevate the participation rate. Research projects which

focus on similar crowd sourcing approaches are very welcome to use and extend my implementations.

Please note that the data collected in this part of the project did not suffice for an extended data

analysis and evaluation. Have a look in section 4.4 if you are interested in this topic.

Dominik Pataky, Großer Beleg „CrowdFilter“, WS2017 10

4. Classification of collected comments
This chapter picks up the conclusion from the previous approach. In the following I will demonstrate a

different procedure implemented to make classification of text snippets more approachable.

46.4%

6.9%

30.9%

15.9%

4chan
Reddit

pol
worldnews

The_Donald
funny

Source Comments Share

4chan /pol/ 105.427 46,4%

Reddit 121.707 53,6%

. funny 36.008 (15,9%)

. the_donald 70.074 (30,9%)

. worldnews 15.625 (6,9%)

Total 227.134

Figure 8: Shares of Comment sources

from Reddit and 4chan

For this I first crawled a collection of Comments from Reddit
and 4chan. Then, having a data set of Comments available for
classification, I built a web front end which presents a fixed set

of Comments to participants.

4.1. Crawling Reddit and 4chan
In detail, I chose to crawl the Subreddits /r/The_Donald, /r/funny
and /r/worldnews on Reddit and the /pol/-Board on 4chan. I

chose The_Donald and /pol/ for their high probability of contain-
ing controversial content, and funny and worldnews to extend the
collection with neutral content which was anticipated to balance

out the data set.

Both websites offer APIs to access their site’s content for ex-

ternal developers.

For the Reddit API, one can use the Python library PRAW (Py-

thon Reddit APIWrapper). It uses a registered account to authen-

ticate via OAuth and offers read-only querying of Subreddits to

fetch their submissions. The query requested the hot category
which returns a list of submissions which according to the rank-

ing algorithm have a high chance of being new and voted up at

the same time [Sal]. I decided against using the controversial
sorting because it does not take the posting time into account.

The board contents from 4chan are also offered by a read-only

API. The limits are much less strict, there is no need for authen-

tication. As written in the 4chan API Rules a rate-limiting function
was added into the crawler to limit the amount of requests to a

maximum of one request per second. By design, 4chan offers

very little metadata with its content, since using and posting to

the site is possible without any form of registration or authentic-

ation.

Reddit 4chan

identifier post number

timestamp timestamp

permalink board name

score country

Figure 9: Stored metadata of

Comments crawled

from Reddit and

4chan

Results from queries to the APIs were examined by the crawler script.

Only a part of the delivered metadata was stored, together with the con-

tent body and source_id, as displayed in figure 9. Both platforms offer
unique identifiers and the creation timestamp of submissions. Additionally

Reddit’s permalink URL and the current score was stored together with the

submission, and the board and country name with 4chan posts. The Red-

dit permalink enabled finding the submission’s Subreddit without having to

store this value individually.

The first crawler implementation used SQLite storages for each source

independently. Later on, these databases were migrated into the Postgr-

eSQL DBMS instance which was already set up for the Collector explained

in section 3.2, creating a new database to store the data. A migration script

read the SQLite storages, connected to PostgreSQL and inserted all stored rows.

Because the schemata of both sources were still split, I later on created a unified schema under the

name comment which has an id, a source_id which is a foreign key to the source table, the body text
content and a meta attribute. The meta field used the PostgreSQL specific HSTORE key-value datatype.
This enabled storing metadata dynamically without having to change the table columns later on. The

final database schema is pictured in figure 16.

Alembic was used for the upgrades and migrations between database schema changes. Since I also

used the SQLAlchemy framework for database interaction in the scripts, Alembic fit very well into the

code base.

Dominik Pataky, Großer Beleg „CrowdFilter“, WS2017 11

4.2. Crowd-sourced classification of comments
In this second approach I focused on implementing an easier to use classification interface for parti-

cipants. Having a collection of Comments I created a web front end which displayed a set of ten Comments
and offered the option to classify each Comment from a list of pre-defined classifications.
The front end was again implemented as a Flask web application in Python, connecting to the existing

PostgreSQL database. To render the input forms the Flask extension WTForms was used.

As mentioned above a participant is presented a sample set of ten Comments randomly collected from
the crawled collection. This sample set was a random mixture consisting of three Comments from 4chan
/pol/ and four Comments from Reddit (the_donald, funny, worldnews), the last three being „recycled“ Com-
ments. Those recycled Comments were collected from the pool of Classifications from existing sample
sets, increasing the chance of multiple Evaluations for each existing Classification. If not enough Com-
ments could be collected, the mixture received more Comments from 4chan.

To differentiate participants I decided to use a pseudonymous PIN system which does not require

users to authenticate with any personal information, but also enables linking multiple Evaluations to-
gether by account. Participants who returned after some time could re-use their PIN to continue the

evaluation process without having to re-evaluate sample sets they had already seen. Did a user return

to a set evaluated earlier the previous Evaluations were loaded from the data base and presented in the
form. The PINs consisted of four digits – a system with more users would have to increase this range to

not only support more users but also to prevent users from randomly reusing a PIN owned by another

user.

Logging in with a PIN additionally created a hash of the user’s IP address, User-Agent and accepted

languages. This fingerprinting technique allowed monitoring any reuse of PINs by different participants.

But I never had to take action based on this stored data.

For monitoring of the usage of the ongoing Simulation an admin page which processed the current

database entries and generated multiple statistics was added. For example I adjusted the crawler script

to save crawling results into the database and could then compare different crawler runs in terms of

collected Comments and duration of the run to detect any problems. Furthermore the statistics showed
how many participants sent how many Evaluations and the amount of usages for each classification
label.

4.3. Evaluation
The motivation for this implementation was to lower the usage barrier for participants encountered

in part one of the project. After looking at the amount of submitted Evaluations it is obvious that this
channel of input resulted in more usable Classifications. In total, 13 participants evaluated at least one
sample set. Figure 12 shows the amount of newly created users (each with a unique PIN) by day and the

amounts of submitted Evaluations by user. With an amount of 260 Evaluations, the user with PIN 4343

has submitted around 35% of the total 748 Evaluations. The author himself used PIN 7552 in the role of

a real participant.

The graph also shows that some users submitted an odd amount of Evaluations. This stems from the
combined data set from two deployed application versions, one where an Evaluation with the label „No
classification“ was not saved at all and the second version where every submitted sample set generated

ten Evaluation database entries – including saving the choice of „No classification“.
This means the total amount of usages of the „No classification“ evaluation label could in fact be higher

than extracted. It is also important to note that the admin interface offered the option to enable and

disable individual classification labels during the project run – a feature that also influenced the amount

of usages. Since this run was experimental to primarily test intended functionalities, an evaluation which

focuses on the generation of usable crowd sourced data must run with a fixed set of labels.

When asked about their experiences after using the tool, users told me

1. the interface was simple enough to be easily understood and used,

2. the automated loading of new comments encouraged evaluating multiple sample sets,

3. it could prove difficult to classify content without any context the comment was written in (e.g.

making it hard to detect irony and satire),

Dominik Pataky, Großer Beleg „CrowdFilter“, WS2017 12

4. using the labels without further explanation of their meanings was too broad, the interpretations

of the presented labels were partly overlapping (e.g. xenophobia and racism seemed hard to be

distinguished),

5. positive labels like „funny“ and „acceptable“ would have also be used if available.

4.4. Data analysis
We will now look further into the collected data and generated statistics. As already mentioned there

were 748 total evaluations submitted to the CrowdFilter server. 539 of these evaluations, or 72%, were

submitted with the „No classification“ label. The rest were distributed over 12 classifications, with „pro-

vocative“, „confrontational“ and „racism“ being the most used labels. A detailed graph can be found in

figure 10a.

Another aspect which was extracted was the difference between the number of classifications de-

pending on the source of the Comment. Figure 10b shows two distributions of sources, one including
the evaluation „No classification“ and one without. Comparing the first graph with the sources graph in

figure 8 we can see they have similar share distributions – it looks like the mixture of Comments in the

generated sample sets mentioned above did work as expected.

In contrast the shares shift noticeably when only the submitted Classifications are taken into account.

While the worldnews Subreddit stays at around 6.2%, the 4chan /pol/ board takes a lot of share from
The_Donald and funny – increasing from 47.1% to 61.2%. This could indicate that Comments from 4chan

are more suitable to be evaluated by only looking at a single object, compared to Comments from Reddit

which uses a more complex threading style within discussion topics – meaning the context between

Comments plays a bigger role. But this assumption is solely based on usage experience by the author,

the collected data base the analysis is based on is way to small to support this observation.

As mentioned above, the crawled data from 4chan also contains the countrymeta data. In figure 11 the
percentage of Evaluations versus Classifications by each country is displayed. Fictional countries users

can choose from a list were removed, only keeping those countries which are determined based on the

geographic location by the 4chan software in their back end. The analysis shows that e.g. users from the

Netherlands and Croatia have a high percentage (75%) of classified Comments in comparison to their

total number of Evaluations. Looking at the country with the most Evaluations, the United States, we

see that only 46 of 143 Evaluations (32.2%) were Classifications.

Please note that the sample set mixture algorithm did not use the countrymeta data field. The statistic
does not compare the total percentage of users in all crawled Comments.

Dominik Pataky, Großer Beleg „CrowdFilter“, WS2017 13

Violence

Homophobia
Trolling

Fake news
Sexism

Harassm
ent

Xenophobia
Offensive

Hate speech
Racism

Confrontational

Provocative
0

5

10

15

20

25

30

35

St
ac

ke
d

us
ag

e
co

un
t b

y
so

ur
ce

2

7
8

9

12 12
14

24
25

29
31

36
pol
worldnews
The_Donald
funny

(a) Classification label usages

47.1%
352

6.1%
46

33.4%
250

13.4%
100

Shares of total evaluations
(including 'No classification')

pol
worldnews

The_Donald
funny

61.2%
128

6.2%
13 24.9%

52

7.7%
16

Shares of classifications

(b) Classification usage shares by comment source

Figure 10: Statistics regarding the usage of classification labels

Dominik Pataky, Großer Beleg „CrowdFilter“, WS2017 14

Netherlands
Croatia

Sweden
Austra

lia
Austria

United Kingdom
Canada

United States
Norway

Sri Lanka
0

20

40

60

80

100

120

140
Am

ou
nt

 o
f e

va
lu

at
io

ns
/c

la
ss

ifi
ca

tio
ns

8 4 6 8 8

57

23

143

7 1175.0% 75.0% 50.0% 50.0% 50.0%

36.8%

34.8%

32.2%

28.6% 27.3%

6 3 3 4 4

21

8

46

2 3

Figure 11: Percentage of Evaluations versus Classifications on 4chan /pol/ by country meta tag

2018-02-15 2018-02-22 2018-03-01 2018-03-08

0

2

4

6

8

10

12

14

Am
ou

nt
 o

f n
ew

 u
se

rs
 c

re
at

ed

4751 3646 2777 7099 6193 6261 2486 1386 1110 8906 7552 4343
PIN

0

50

100

150

200

250

Am
ou

nt
 o

f e
va

lu
at

io
ns

1 5 10 10 12
30 37

50
60

70

203

260

Figure 12: Amount of users created by day and Amount of evaluations by PIN

Dominik Pataky, Großer Beleg „CrowdFilter“, WS2017 15

5. Difficulties of using pre-selected classification labels
In both parts of the project, the add-on and the Evaluation tool, I used a list of classification labels I

deemed to fit for this purpose. Some aspects which were taken into consideration:

1. Should positive labels be included as well?

2. Some labels are more general than others – should only the most specific labels be usable?

3. And if yes, should they be visualised in a hierarchical structure?

4. Should the interface provide an input element for custom labels?

5. And if yes, should this input be completely customisable or should it reuse other custom labels?

6. How could biases the users are exposed to be distinguished?

7. Should the user be able to classify a Comment with multiple labels?

I did experiment with the usage of positive labels mentioned in question 1. The labels „Good con-

tribution“ (in contrast to „Bad contribution“ and later „Useless contribution“) and „Compliment“ were

available in version 1 of the add-on, but were dropped in version 2. Regarding question 4, the use of

custom labels, I implemented this feature in the second part of the project by offering an input text field

for extra remarks in the evaluation web form. Question 6 aimed at the possibility that some participant

groups might preferably use some labels more than others, e.g. users who react very sensitive to racism

might tend to use the label more often.

As mentioned in section 4.3 the received feedback for the add-on very early illustrated the difficulty of

mutually shared interpretations between all participants. I therefore later added a list of interpretations

I associated with each label and the users could look into it on the add-on settings page. To illustrate

this approach, the list looked as follows:

Harassment Content that primarily attacks someone
Trolling Content intended to provoke extreme reactions
Racism Bad content that aims at race, origin or ethnic of the poster

Fake News Content that is provably factually false
Useless contribution Contribution does not add value to the discussion
Sexism Targeting the sex of the attacked person

Xenophobia Attacking a person because of their geographical origin
The list might produce even more questions than answers. Where does one draw the line between

harmless banter and harassment? Whats the clear difference between racism and xenophobia? What

sources should be agreed on to prove the validity of facts? Which one is the „factually true“ one if

sources contradict each other? It is obvious that even with the list of explanations it is still difficult to find

a common ground everybody agrees with.

The Evaluation tool did not offer such explanation list but I chose to use more specific labels and

remove some of the labels from before. In the end the following labels were activated to be used by

users of the web interface: Confrontational, Hate speech, Homophobia, No classification, Offensive,

Provocative, Racism, Sexism, Violence and Xenophobia.

The removal of „Fake News“ and „Trolling“ was based on feedback which made clear that those were

too hard to identify without having proper context the Comment was written in. Other labels seemed

to be easier to use, e.g. if a Comment contained a racial slur it seemed likely the Comment had racist

intentions. For label usage statistics have a look at section 4.4.

Dominik Pataky, Großer Beleg „CrowdFilter“, WS2017 16

6. Conclusion
I was looking for a solution to regulate content on platforms without having to force the liability of inter-

pretation onto a single central authority. CrowdFilter was a technical approach to shift these regulatory

decisions to a crowd sourced alternative. Looking back, the crowd sourced approach proved to be very

difficult. The engagement rate of participants kept low despite multiple occasions of advertisement, res-

ulting in a too narrow data set to continue. Nevertheless, the three iterations CrowdFilter went through

- two versions of the add-on and thirdly the web interface with pre-collected Comments - built upon

another, based on feedback from real participants.

In the end a combination of the add-on bundled with the web interface seems to be a good basis for

similar projects. To extend the software, platforms could for example input reports from their websites

into the Comment database, making the content available to be evaluated by participants in the evalu-

ation process. The Evaluation tool could further be integrated into existing tools, adding other features

to increase involvement (e.g. gamification).

Regarding the continuation of the project from my side, I have taken both the technical and the social

issues which surfaced during the project into account. On the technical side a solution to the question

above is – given an appropriate data basis – realisable with a collection of tools.

But looking at the social implications tools like CrowdFilter introduce, I strongly caution against seeing

software as a solution to social problems like Fake News and hate speech. Software should only serve as

support for structuring information and visualising facts – it should not take over the role of moderators

regulating human communication.

Dominik Pataky, Großer Beleg „CrowdFilter“, WS2017 17

A. Appendix
A.1. Screenshots

Figure 13: Screenshots of (a) the PIN login form and (b) the classification drop down

Figure 14: Evaluation list of comments with classification drop down and comment field

Dominik Pataky, Großer Beleg „CrowdFilter“, WS2017 18

A.2. Database schemata overviews

Figure 15: Database schema of the add-on Collector back end

Figure 16: Database schema of the Evaluator back end

Dominik Pataky, Großer Beleg „CrowdFilter“, WS2017 19

References
[Ant] Universiteit Antwerpen. New technology automatically exposes German hate speech. URL: https:

//www.uantwerpen.be/popup/nieuwsonderdeel.aspx?newsitem_id=3216&c=OZEN21178&n=
113016 (visited on 22/02/2018).

[De+] Nabanita De et al. Students Code An Open Source Fix For Facebook’s Fake News Problem At A Hacka-
thon. URL: https://fossbytes.com/fib-chrome-extension-detect-facebook-fake-news/.

[Exa] Irish Examiner. Facebook warns users about fake news stories. URL: https://www.irishexaminer.
com/ireland/facebook-warns-users-about-fake-news-stories-469409.html.

[Glo] The Boston Globe. College students come up with plug-in to combat fake news. URL: https://
www.bostonglobe.com/news/politics/2017/12/25/college-students-come-with-plug-
combat-fake-news/G0S7FkG2FvKjTwcgQ8wcpM/story.html (visited on 18/01/2018).

[Jus] Bundesministerium für Justiz und für Verbraucherschutz. Gesetz zur Verbesserung der Rechts-
durchsetzung in sozialen Netzwerken. URL: https://www.gesetze-im-internet.de/netzdg/
index.html.

[Kre] Michael Kreil. Social Bots, Fake News und Filterblasen. URL: https://github.com/MichaelKreil/
twitter-analysis.

[Moz] Mozilla. WebExtensions - MDN. URL: https : / / developer . mozilla . org / en - US / Add - ons /
WebExtensions (visited on 25/11/2017).

[Pat] Dominik Pataky. Firefox WebExtensions: injecting, sending data and detecting A JAX. URL: https :
//bitkeks.eu/blog/2018/01/firefox-webextensions-injecting-sending-data-and-
detecting-ajax.html (visited on 16/01/2018).

[Pos] Washington Post. Twitter is looking for ways to let users flag fake news, offensive content. URL: https:
//www.washingtonpost.com/news/the-switch/wp/2017/06/29/twitter-is-looking-for-
ways-to-let-users-flag-fake-news/.

[Sal] Amir Salihefendic. How Reddit ranking algorithms work. URL: https://medium.com/hacking-and-
gonzo/how-reddit-ranking-algorithms-work-ef111e33d0d9 (visited on 18/03/2018).

[Tim] New York Times. Facebook to Let Users Rank Credibility of News. URL: https://www.nytimes.com/
2018/01/19/technology/facebook-news-feed.html (visited on 19/01/2018).

[Tri] Chicago Tribune. Facebook combats fake news with newwarning label. URL: http://www.chicagotribune.
com/bluesky/technology/ct-facebook-fake-news-warning-label-20170307-story.html.

Dominik Pataky, Großer Beleg „CrowdFilter“, WS2017 20

https://www.uantwerpen.be/popup/nieuwsonderdeel.aspx?newsitem_id=3216&c=OZEN21178&n=113016
https://www.uantwerpen.be/popup/nieuwsonderdeel.aspx?newsitem_id=3216&c=OZEN21178&n=113016
https://www.uantwerpen.be/popup/nieuwsonderdeel.aspx?newsitem_id=3216&c=OZEN21178&n=113016
https://fossbytes.com/fib-chrome-extension-detect-facebook-fake-news/
https://www.irishexaminer.com/ireland/facebook-warns-users-about-fake-news-stories-469409.html
https://www.irishexaminer.com/ireland/facebook-warns-users-about-fake-news-stories-469409.html
https://www.bostonglobe.com/news/politics/2017/12/25/college-students-come-with-plug-combat-fake-news/G0S7FkG2FvKjTwcgQ8wcpM/story.html
https://www.bostonglobe.com/news/politics/2017/12/25/college-students-come-with-plug-combat-fake-news/G0S7FkG2FvKjTwcgQ8wcpM/story.html
https://www.bostonglobe.com/news/politics/2017/12/25/college-students-come-with-plug-combat-fake-news/G0S7FkG2FvKjTwcgQ8wcpM/story.html
https://www.gesetze-im-internet.de/netzdg/index.html
https://www.gesetze-im-internet.de/netzdg/index.html
https://github.com/MichaelKreil/twitter-analysis
https://github.com/MichaelKreil/twitter-analysis
https://developer.mozilla.org/en-US/Add-ons/WebExtensions
https://developer.mozilla.org/en-US/Add-ons/WebExtensions
https://bitkeks.eu/blog/2018/01/firefox-webextensions-injecting-sending-data-and-detecting-ajax.html
https://bitkeks.eu/blog/2018/01/firefox-webextensions-injecting-sending-data-and-detecting-ajax.html
https://bitkeks.eu/blog/2018/01/firefox-webextensions-injecting-sending-data-and-detecting-ajax.html
https://www.washingtonpost.com/news/the-switch/wp/2017/06/29/twitter-is-looking-for-ways-to-let-users-flag-fake-news/
https://www.washingtonpost.com/news/the-switch/wp/2017/06/29/twitter-is-looking-for-ways-to-let-users-flag-fake-news/
https://www.washingtonpost.com/news/the-switch/wp/2017/06/29/twitter-is-looking-for-ways-to-let-users-flag-fake-news/
https://medium.com/hacking-and-gonzo/how-reddit-ranking-algorithms-work-ef111e33d0d9
https://medium.com/hacking-and-gonzo/how-reddit-ranking-algorithms-work-ef111e33d0d9
https://www.nytimes.com/2018/01/19/technology/facebook-news-feed.html
https://www.nytimes.com/2018/01/19/technology/facebook-news-feed.html
http://www.chicagotribune.com/bluesky/technology/ct-facebook-fake-news-warning-label-20170307-story.html
http://www.chicagotribune.com/bluesky/technology/ct-facebook-fake-news-warning-label-20170307-story.html

List of Figures
1. Number of users on social media platforms (inmillions). Source: statista.com/statistics/272014 1

2. Overview of the project design, implementation and evaluation flow 3

3. Injection of the drop down button on Twitter . 6

4. Permissions to load the injection script on pages under the domain twitter.com in the

Firefox WebExtension manifest . 7

5. WebRequest event listener used for detecting A JAX page loads and trigger the injection on

certain URL patterns, identified by regular expressions . 7

6. Injection script for Twitter, identifying specific DOM elements used in the injection script

for element insertion . 7

7. Add-on version 2 showing the introduction page which appears after installation and up-

dates of the add-on . 8

8. Shares of Comment sources from Reddit and 4chan . 11

9. Stored metadata of Comments crawled from Reddit and 4chan 11

10. Statistics regarding the usage of classification labels . 14

11. Percentage of Evaluations versus Classifications on 4chan /pol/ by country meta tag 15

12. Amount of users created by day and Amount of evaluations by PIN 15

13. Screenshots of (a) the PIN login form and (b) the classification drop down 18

14. Evaluation list of comments with classification drop down and comment field 18

15. Database schema of the add-on Collector back end . 19

16. Database schema of the Evaluator back end . 19

Acronyms
ACME Automated Certificate Management Envir-

onment. 9

AJAX Asynchronous JavaScript and XML. 4
AMO addons.mozilla.org. 5
API Application Programming Interface. 4
CA Certificate Authority. 9

CORS Cross-origin resource sharing. 8
DOM Document Object Model. 4, 6
MDNMozilla Developer Network. 4
PII Personally Identifiable Information. 9

Dominik Pataky, Großer Beleg „CrowdFilter“, WS2017 21

	Title
	Contents
	Introduction and motivation
	Related projects
	Terms and definitions

	Project overview, designs and evaluations
	Firefox browser add-on and API back end
	The WebExtension add-on
	Version 1: Injecting a drop down button
	Version 2: Using context menu and generic text selection
	Features used in both versions

	Collector
	HTTPS with LetsEncrypt
	TOR hidden service

	Evaluation

	Classification of collected comments
	Crawling Reddit and 4chan
	Crowd-sourced classification of comments
	Evaluation
	Data analysis

	Difficulties of using pre-selected classification labels
	Conclusion
	Appendix
	Screenshots
	Database schemata overviews

	References, List of Figures, Glossary

